
pyftpsync-spec.odt 2019-03-05

pyftpsync
Specification

Table of Contents
Overview.. 2
Requirements..3

Extensibility... 3
Performance... 3
Robustness... 3
File System Encoding and Restrictions... 4
Compatibility and Requirements... 4
Usability and Consistency... 4

Algorithm... 5
File Entry Properties and Metadata... 5

Example of a Local .pyftpsync-meta.json After a Synchronization..6
mtime on FTP Servers...6
Example of a .pyftpsync-meta.json on a Remote FTP Server After a Synchronization.............7
Glossary.. 7

Classification of Entries and Pairs... 8
Determining the Synchronization Action.. 9

Bi-Directional Synchronization.. 9
Standard Case: Metadata is Available.. 9
Special Case: No Metadata Available...10
Special Case: Directories..10

Upload Synchronization..11
Download Synchronization... 11

File System Encoding and Restrictions..12
Command Line Interface.. 15
Appendix 1: Test Fixture.. 16

Page 1 of 16

pyftpsync-spec.odt 2019-03-05

Overview
Pyftpsync is an open source project that allows to synchronize directories over FTP(S) and file
system access.

Copyright © 2012-2019 Martin Wendt, free for use according to the MIT license.

• This is a command line tool…

• … and a library for use in your Python projects.

• Upload, download, and bi-directional synchronization mode.

• Allows FTP-to-FTP and Filesystem-to-Filesystem synchronization as well.

• Architecture is open to add other target types.

The project is maintained on GitHub: https://github.com/mar10/pyftpsync.
Feedback and contributions are welcome.

Page 2 of 16

https://github.com/mar10/pyftpsync
http://www.opensource.org/licenses/mit-license.php

pyftpsync-spec.odt 2019-03-05

Requirements
Design goals and derived decisions.

Extensibility
pyftpsync is designed as a Python library in the first place. The command line interface is an
application use case that builds on this.
This approach also allows for easy automated testing.

The architecture should be easy to extend, for example add new target types (think TFTP, WebDAV,
or Google Drive API).

Performance
The synchronization process should be reasonably fast.

FTP servers (in general) don't support sending etags or CRC checksums with a dir listing.
Since calculating CRCs on a remote server would require slow downloads, we rely on file sizes and
modification times to detect changes.
This implies that MLST support is a requirement for FTP servers.

Robustness
We need to deal with some special scenarios

• Local or remote files may be modified, added, or removed by users at any time, so the

metadata stored by pyftpsync becomes invalid.
→ we have to detect invalidated metadata

• Files may be modified without changing the file size.

→ we will not rely on this value to check for equality (but use it to pre-check for inequality).

• It may even be possible that a file content has changed without changing the modification

time, but this would require some explicit file time manipulation by the user (or occur in
very unlikely cases, where the system clock is set).
→ we will still rely on the file time to detect modifications, but maybe add an option for
binary comparisons / CRCs in the future.

• Files may be changed on both targets between two synchronizations:

→ We need to identify conflicts and offer different conflict resolution strategies.

• System clock of server and client may be out of sync by a few seconds or minutes.

Server and client may also use different time zones.
→ always use GMT time, probe the server for a time delta, and use an epsilon when
comparing times.

Page 3 of 16

pyftpsync-spec.odt 2019-03-05

• One local folder may be synchronized with different remote targets. Likewise, one remote

target may be used by different clients.
→ metadata must be stored per peer id

• Different pyftpsync jobs may run at the same time.

For example two clients synchronize with the same remote target (or one remote target is a
sub folder of the other). This may lead to corrupt data.
→ some sort of locking would help

• A pyftpsync job may be interrupted by Ctrl-C, FTP server problems, missing permissions,

programming errors, network errors, etc.
→ We should try to prevent or repair inconsistent source files, metadata, or stale locks.

File System Encoding and Restrictions
FTP servers and file systems may use different encodings for folders and file names.
Targets may also define a maximum length for resource paths or have different sets of disallowed
characters.

We should try to handle those potential conflicts in a transparent and predictable way. See `File
System Encoding and Restrictions` below.

Compatibility and Requirements
We want to support as many platforms and impose as few pre-conditions or restrictions as possible.

There should be no need to have a watchdog service running on the server or client.

Usability and Consistency
Synchronization is technically tricky, but may also be confusing even if implemented correctly.
The interface should be clear and provide transparent information to avoid accidental misuse:

• Use terms “Local” / “Remote” consistently.

• Support dry-run mode.

• 'upload' mode never modifies local target. Likewise 'download' mode never modifies remote

target.

• Use defensive defaults.

• Display understandable information on conflicts.

Page 4 of 16

pyftpsync-spec.odt 2019-03-05

Algorithm
 1 Instantiate two target objects (local and remote), derived from the _Target class.

 2 Define a synchronizer (upload, download, or bi-directional), derived from the
_BaseSynchronizer class.

 3 Call synchronizer.run()

 3.1 Walk both target trees and find matching/new/missing entry pairs.
Also optionally apply inclusion/exclusion filter patterns.

 3.2 Classify entries (Existing? Modified since last sync?)

 3.3 Classify entry pairs and call handler, for example
synchronizer.sync_older_local_file(local, remote)

 4 Dump statistics

File Entry Properties and Metadata
For every entry we need to know

1. Current file size and file modification time as reported by the file system

2. timestamp of last successful, not-dry-run synchronization (if any)

3. file size and file modification time at the time of last synchronization
This values may be None if the file did not exist at that time.

The information of 2.) and 3.) is stored as additional metadata.
This also allows to detect files that have been deleted since last synchronization, because they will
still appear in the metadata.

Metadata for file status at the last synchronization time is always stored in a text file named
`.pyftpsync-meta.json` inside the local folder, because it is more likely that we have write access
here.

The metadata is used to detect conflicts, i.e. we want to tell if files have bee modified since the last
synchronization. Because a target may be synchronized with different peers, we must maintain the
data sets per peer.

Metadata is stored in JSON text format, normally in a compact version. For debugging a verbose
version can be activated, which is indented and includes string formatted date fields.

Page 5 of 16

pyftpsync-spec.odt 2019-03-05

Example of a Local .pyftpsync-meta.json After a Synchronization

(showing the verbose format):

{
 "_disclaimer": "Generated by https://github.com/mar10/pyftpsync",
 "_file_version": 2,
 "_time": 1470750669.0,
 "_time_str": "Tue Aug 9 16:51:09 2016",
 "_version": "1.1.0",
 "mtimes": {},
 "peer_sync": {
 "www.example.com/test_pyftpsync": {
 ":last_sync": 1470754266.689334,
 ":last_sync_str": "Tue Aug 9 16:51:06 2016",
 "a.txt": {
 "m": 1418577067.0,
 "mtime_str": "Sun Dec 14 18:11:07 2014",
 "s": 56,
 "u": 1470730157.237741,
 "uploaded_str": "Tue Aug 9 10:09:17 2016"
 },
 "b.txt": {
 "m": 1418577087.0,
 "mtime_str": "Sun Dec 14 18:11:27 2014",
 "s": 69,
 "u": 1470730157.452979,
 "uploaded_str": "Tue Aug 9 10:09:17 2016"
 }
 }
 }
}

mtime on FTP Servers

On FTP targets there is an additional global section in the metadata that holds the original
modification times of the uploaded files.
This is required, because FTP servers will always set file time to the upload time.

This information is stored by the client on the remote server, whenever a file is uploaded.

We must discard those entries, when a file was modified by another client than pyftpsync.
In order to detect external changes, we also store the update time and size and check if the current
size had changed, or if the current mtime is later than the last upload time.

Page 6 of 16

pyftpsync-spec.odt 2019-03-05

Example of a .pyftpsync-meta.json on a Remote FTP Server After a
Synchronization

(showing the verbose format):

{
 "_disclaimer": "Generated by https://github.com/mar10/pyftpsync",
 "_file_version": 2,
 "_time": 1470750669.0,
 "_time_str": "Tue Aug 9 16:51:09 2016",
 "_version": "1.1.0",
 "mtimes": {
 "a.txt": {
 "m": 1418577067.0,
 "mtime_str": "Sun Dec 14 18:11:07 2014",
 "s": 56,
 "u": 1470730157.237687,
 "uploaded_str": "Tue Aug 9 10:09:17 2016"
 },
 "b.txt": {
 "m": 1418577087.0,
 "mtime_str": "Sun Dec 14 18:11:27 2014",
 "s": 69,
 "u": 1470730157.452889,
 "uploaded_str": "Tue Aug 9 10:09:17 2016"
 }
 },
 "peer_sync": {}
}

Glossary

We refer to these properties as (assuming local filesystem and remote FTP server):

Local target:

size(L) Local file size as reported by the file system.
mtime(L) Local file modification time as reported by the file system.
pssize Peer sync size: snapshot of size at the time of last copy operation.

(Stored in a metadata file on the local target.)
psmtime Peer sync modification time: snapshot of mtime at the time of the last copy

operation. (Stored in a metadata file on the local target.)
psutime Peer sync time: time of last copy operation. (Stored in a metadata file on the

local target.)

Remote target:
(pssize, psmtime, and psutime are identical to the local target.)

size(R) Remote file size as reported by the FTP server.
mtime(R) File modification time of the uploaded file.

Note that we store this as separate metadata on FTP servers, because FTP
servers apply the upload time to all files during synchronization. In this case
mtime(R) is this adjusted modification time of the original uploaded file.
Defaults to rtime(R) if no metadata is available.

Page 7 of 16

pyftpsync-spec.odt 2019-03-05

rtime(R) REAL remote file modification time as reported by the FTP server.
This value is normally nearly identical with psutime (not mtime), because FTP
servers cannot set or copy an explicit file time.

Classification of Entries and Pairs
If pyftpsync has never run on a folder, there will be no metadata file at all, so we can only do a
simple classification:

Existing A file is existing if it currently exists on the file system, but we have no
metadata file at all.

If a metadata file is available however, we can use this information to replace the classification
existing with a more specific one:

Missing A file is missing if it is not existing and we don’t have metadata for it.
Deleted A file is deleted if it is not existing, but we have metadata for it.
Modified A file is modified if it is existing, has metadata, and

size ≠ pssize or mtime ≠ psmtime
Unmodified A file is unmodified if it is existing, has metadata, but is not modified.
New A file is new if it is existing, but we don't have metadata for it.

A pair’s classification is defined by the combination of local and remote classifications.
Some examples:

(existing, existing) A file name was found on remote and local target. Since we don’t
have a metadata file, we may need to compare the file sizes or
content to find out if they are identical or if we have a conflict.

(existing, None) A matching file does not exist on remote target, so we may upload
the local file to remote or delete the local file.

(unmodified, modified) We can download the modified remote file.

(modified, modified) This is a conflict that we need to resolve in some way.

We can classify a pair as follows:
Equal A pair of entries is equal if both are existing and

size(L) = size(R) and mtime(L) = mtime(R)

If metadata is available, we consider it equal if both entries are unmodified.
Conflict A pair of entries is a conflict if both are existing and

size(L) ≠ size(R) or mtime(L) ≠ mtime(R)

If metadata is available, we consider it a conflict if one entry is modified and
the peer entry is modified, new, or deleted.

Other If only one entry is modified or only one entry exists, this may result in copy
operations, depending on the synchronization mode.

Page 8 of 16

pyftpsync-spec.odt 2019-03-05

Determining the Synchronization Action

Bi-Directional Synchronization

Standard Case: Metadata is Available

The synchronizer performs operations based on the preceding classification.
The standard operations are listed in the following table:

Sync Action
Remote target

missing new unmodified modified deleted

Local
target

missing n.a. < Copy new < Copy new < Copy new Only cleanup
metadata

new Copy new > (1) Need compare (1) Need compare (2) Potential
conflict

Conflict

unmodified Copy new > (1) Need compare (1) Need compare(*) < Replace modified < Delete missing

modified Copy new > (2) Potential
conflict

Replace modified > Conflict Conflict

deleted Only cleanup
metadata

Conflict Delete missing > Conflict Only cleanup
metadata

(1) Compare mtime of source and target.

mtime(L) < mtime(R) → Use remote file

mtime(L) > mtime(R) → Use local file

mtime(L) == mtime(R) and size(L) == size(R) → Nothing to do

mtime(L) == mtime(R) and size(L) ≠ size(R) → Conflict.
(*) TODO: This should not be possible?
(2) Same as (1) but if the file that we would replace has status modified, we treat this as Conflict.

Additional options may be passed to modify the behavior:

• --resolve: Define a resolving strategy for conflicted pairs (skip, ask, use local, use remote,

use newer, use older).

Page 9 of 16

pyftpsync-spec.odt 2019-03-05

Special Case: No Metadata Available

If pyftpsync is run for the first time, or if a new folder was created by a user since last sync, we
don’t have metadata available. All we know is that an entry is existing or not. This limits the
number of possible classifications:

Sync Action
Remote target

None existing

Local
target

None n.a. < Copy new

existing Copy new > (1) Need compare

(1) Compare mtime of source and target.

mtime(L) < mtime(R) → Use remote file

mtime(L) > mtime(R) → Use local file

mtime(L) == mtime(R) and size(L) == size(R) → Nothing to do

mtime(L) == mtime(R) and size(L) ≠ size(R) → Conflict.

The classification code will convert (existing, existing) pairs to combinations of modified and
unmodified, such that the synchronizer will handle them accordingly.

Special Case: Directories

A directory is an entry, so we may have metadata available to decide whether it was created or
removed since last sync.

However we don’t know if it was modified, because there is no meaningful mtime or size value.
Figuring out would require a deep traversal, which we currently do not do for performance reasons.
Instead we consider directories unmodified, so we will not detect conflicts when a folder was
deleted on one target and modified on the peer.
We do detect changes and conflicts of child entries, since we will traverse folders.

Sync Action
Remote target

missing new unmodified deleted

Local
target

missing n.a. < Copy new < Copy new Only cleanup metadata

new Copy new > (1) Nothing to do (1) Nothing to do Conflict

unmodified Copy new > (1) Nothing to do (1) Nothing to do < Delete local

deleted Only cleanup
metadata

Conflict Delete remote > Only cleanup metadata

(1) Nothing to do: Simply traverse child entries.

Page 10 of 16

pyftpsync-spec.odt 2019-03-05

Upload Synchronization

Basically a subset of Bi-Directional synchronization where the local target is treated as read-only
(except for writing to the metadata file .pyftpsync-meta-json).

In Upload (and Download) mode we only replace files with newer versions (and only if they are not
conflicted).
Additional options may be passed to modify this behavior:

• --force: always replace files on remote, even if local version is older (but still only if not

conflicted).

• --delete: remove files on remote if they don't exist on local.

• --delete-unmatched: remove files on remote if they don't match the custom filter (implies

--delete).

• --resolve: provide a conflict resolution strategy.

Download Synchronization

Basically a subset of Bi-Directional synchronization where the remote target is treated as read-only.

Page 11 of 16

pyftpsync-spec.odt 2019-03-05

File System Encoding and Restrictions
(New with v3.0.)

This topic is known and rooted in a broken FTP specification.

From https://wiki.filezilla-project.org/Character_Encoding (2016-08-28):

FTP is a rather old protocol and things we take for granted now were not even considered
when it was designed. One of these things is support for non-English characters in
filenames.
When the FTP protocol was designed, computers mostly spoke English and were unable to
display any non-English characters. As such, the FTP protocol was designed to be used with
English characters only, namely 7-bit ASCII.

The problem is that many FTP clients and servers purposely violate the FTP specifications
in order to support other, non-standard character sets.
Which of these character sets are used is not subject to any negotiation. For any character
set in existence, you can find a server using it with no way of detecting the proper encoding.

The result: non-English characters are not transferred correctly.

To solve this problem, the FTP protocol has been extended in a backwards compatible way
to use UTF-8 as the character set. (This solution is backwards compatible only with servers
in compliance with the original specifications.)

If you have problems with filenames containing any foreign characters, this can have two
reasons:

1. The server or client follows the original specifications by the letter and rightfully
rejects those filenames

2. The server or client violates the specifications and uses a custom encoding that the
other party does not understand

Both FileZilla Client and Server are fully compliant with the updated specifications and use
UTF-8. FileZilla will not break FTP specifications by supporting non-standard encodings in
order to accommodate the user.
If you have problems with other clients or servers, please upgrade (or ask the server to
upgrade) to FTP software capable of UTF-8 or refrain from using foreign characters.
Anything else is in violation of the FTP specifications and will only work if you manually
ensure that the server and client use the same character encoding (which may not even be
possible).

So we assume that

1. FTP servers store and retrieve names as binary strings (don't care about encoding).

Page 12 of 16

https://wiki.filezilla-project.org/Character_Encoding

pyftpsync-spec.odt 2019-03-05

(https://stackoverflow.com/a/3120633/19166)
Modern implementations of FTP servers and clients use UTF-8.
This is backwards compatible with the FTP specification in theory, since previously only
7-bit ascii was officially allowed.
However it is known that some servers out there still deliver any other encoding.
(https://wiki.filezilla-project.org/Character_Encoding)

2. Even if UTF-8 is the most reasonable encoding for byte strings, ISO-8859-1 is probably
the 2nd most used form that we meet (the latest HTML standard requires ISO-8859-1 to
be interpreted as CP-1252). (https://stackoverflow.com/a/3120633/19166)
So if UTF-8 decoding fails, we should assume CP-1252.
This can be overridden using –remote-encoding=CODING.

3. File System targets

1. On Python 2 we pass unicode paths to the os API , so we get unicode in return.
2. Local File-System-Targets use sys.getfilesystemencoding() as default (UTF-8 if

not detectable).

4. Python’s ftplib

1. On Python 2
Expects native path names (i.e. binary). If unicode is passed in, ASCII is always
used to convert, which fails for special characters.
→ We always pass already encoded binary strings to the API.
The API produces native (i.e. binary) name listings, in the encoding that the server
sent.
→ We can immediately convert API results to unicode using utf-8/cp1252 as
described above.

2. On Python 3
Expects native path names (i.e. unicode).
The default encoding is “latin-1”, but can be ocverridden.
→ We always pass unicode to the API and set ftplib.ftp.encoding to “utf-8”.
API produces native (i.e. unicode) name listings, that have been decoded from the
server’s binary response.
→ this should work well if ftplib.ftp.encoding was set correctly.

5. Metadata files
We store metadata in dicts that have the file names ans paths as keys. Those dicts are
persisted as JSON files.

1. Python’s json loader converts binary keys to unicode using UTF-8 (needed for
sorting). This may fail for ISO-8859-1 encoded strings.
→ We use native `str` for paths internally (i.e. unicode or utf-8). We also convert the

Page 13 of 16

https://stackoverflow.com/a/3120633/19166
https://wiki.filezilla-project.org/Character_Encoding
https://stackoverflow.com/a/3120633/19166

pyftpsync-spec.odt 2019-03-05

keys to unicode before saving as JSON on Python 2.

2. Lookups may fail if the key format does not match:
 if utf8_path in dict_with_unicode_keys
may not find the entry.
→ We convert all keys to native `str` after reading from JSON.

6. Conclusions

1. In our code, we store all paths in a canonical format that supports unicode characters.
However, we use the platforms native format, so it is easier to code string operations.
This means on Python 2: UTF-8 encoded str, whereas on Python 3 it’s unicode.

2. The .pyftpsync-meta.json files use UTF-8 always.
We pass `ensure_ascii=False`, so non-ascii characters will not be escaped as \xNN
or \uNNNN.
For pretty-printing we pass `sort_keys=True`. The JSON writer converts to unicode
assuming UTF-8 for sorting, so passed-in binary strings must be encoded as UTF-8.

3. TODO: If this heuristic does not work, we need to handle this exceptions and skip
the node, or ask the user?
Should we issue a warning instead of falling back to CP-1252 for single files?
If the server does not send UTF-8, should we switch a CP-1252 mode altogether, i.e.
also send our files in that encoding?
==> NO. It should be enough to warn/skip. User can use the encoding option then.

4. TODO: How should we handle the case that local uses UTF-8, and remote uses CP-
1252?
==> we still send UTF-8 to the FTP server, so it will store it in that form.
Unless --remote-encoding was set otherwise.

Page 14 of 16

pyftpsync-spec.odt 2019-03-05

Command Line Interface
The command line interface is a front end to the pyftpsync library, that adds this functionality:

• Allow to instantiate and configure the synchronizer and targets, based on URL strings

• Allow to pass flags to configure the synchronization process and define filter patterns

• Maintain credentials in the system keyring

• Display progress status and statistics

• Provide a dry-run mode

• Prompt for resolution if conflicts are detected

Page 15 of 16

pyftpsync-spec.odt 2019-03-05

Appendix 1: Test Fixture
This test fixture is used by some of the unit tests.

 Local Remote
--
file1.txt 12:00 12:00 (unmodified)
file2.txt 13:00 12:00
file3.txt x 12:00
file4.txt 12:00 13:00
file5.txt 12:00 x
file6.txt 13:00 13:00:05 CONFLICT!
file7.txt 13:00:05 13:00 CONFLICT!
file8.txt x 13:00 CONFLICT!
file9.txt 13:00 x CONFLICT!

folder1/file1_1.txt 12.00 12:00 (unmodified)
folder2/file2_1.txt 13.00 12:00
folder3/file3_1.txt x 12:00 (folder deleted)
folder4/file4_1.txt x 13:00 (*) undetected CONFLICT!
folder5/file5_1.txt 12:00 13:00
folder6/file6_1.txt 12:00 x (folder deleted)
folder7/file7_1.txt 13:00 x (*) undetected CONFLICT!

new_file1.txt 13:00 -
new_file2.txt - 13:00
new_file3.txt 13:00 13:00 (same size)
new_file4.txt 13:00 13:00 CONFLICT! (different
size)
new_file5.txt 13:00 13:00:05 CONFLICT!
new_file6.txt 13:00:05 13:00 CONFLICT!

NOTE: (*) currently conflicts are NOT detected, when a file is edited on one
 target and the parent folder is removed on the peer target.
 The folder will be removed on sync!

Page 16 of 16

	Overview
	Requirements
	Extensibility
	Performance
	Robustness
	File System Encoding and Restrictions
	Compatibility and Requirements
	Usability and Consistency

	Algorithm
	File Entry Properties and Metadata
	Example of a Local .pyftpsync-meta.json After a Synchronization
	mtime on FTP Servers
	Example of a .pyftpsync-meta.json on a Remote FTP Server After a Synchronization
	Glossary

	Classification of Entries and Pairs
	Determining the Synchronization Action
	Bi-Directional Synchronization
	Standard Case: Metadata is Available
	Special Case: No Metadata Available
	Special Case: Directories

	Upload Synchronization
	Download Synchronization

	File System Encoding and Restrictions
	Command Line Interface
	Appendix 1: Test Fixture

